

Technical Literature B-02

Kinematic Viscoelasticity of AURUM[®]

Kinematic viscoelasticity is used as a measure for evaluating the thermal properties of a material.

The modulus of elasticity of a material changes substantially in the vicinity of the glass transition temperature. Fig. 1 shows the way the viscoelasticity of AURUM[®] changes in comparison with other representative crystalline engineering plastics (PEEK, PAm 6,6 and PTFE) and a non-crystalline engineering plastic (PES).

With the conventional crystalline engineering plastics, the glass transition temperature of all of them is lower by over 100°C than that of AURUM[®], and therefore their flexural modulus declines sharply in the low temperature range (RT: up to 200°C).

On the other hand, the characteristic of a non-crystalline engineering plastic (PES) is that it is higher in glass transition temperature than a crystalline engineering plastic. In spite of that, however, its modulus of elasticity falls very sharply at a temperature a little higher than 200°C.

As described above, AURUM[®] has those excellent thermal properties which even non-crystalline engineering plastics, not to mention the conventional crystalline engineering plastics, do not have. Because of this, AURUM[®] can be applied to various moving parts requiring high performance.

	Tg	Tm	
(A) AURUM [®]	250	388	Crystalline
(B) PEEK	143	334	Crystalline
(C) PES	225	-	Non-crystalline
(D) PAm 6,6	80	265	Crystalline
(E) PTFE	-110, 30, 130	327	Crystalline

FIG. 1 KINETIC VISCOEIASTICITV	Fig. 1	Kinetic Viscoelasticity
--------------------------------	--------	-------------------------

The information contained herein is based on the information and data available at this moment, but none of the data or evaluation results contained herein provide any warranty whatsoever.